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Abstract In this work, Arg-Gly-Asp (RGD) sequence

containing peptide was immobilized on hydroxyapatite

(HA) coatings through a chemical bonding approach in two

steps, surface modification with 3-aminopropyltriethox-

ysilane (APTES) and RGD immobilization. The results

indicate that RGD has been successfully immobilized on

HA coatings. Comparing with physical adsorption coat-

ings, the chemically bonded RGD on the coatings shows

much better anti-wash-out ability. Since RGD is able to

recognize cell-membrane integrins on biointerfaces, the

present method will be an effective way to favor interaction

of cells with HA coatings.

1 Introduction

Hydroxyapatite (HA) as a coating material has been widely

investigated due to its biological and chemical similarity to

the inorganic phases of bones and teeth [1]. HA coatings on

Ti result in enhanced bone formation and apposition [2],

and greatly improve fixation to adjacent bone in compari-

son to uncoated Ti [3]. As implantable biomaterials, the

coatings are primarily required to facilitate cell adhesion,

promote cell proliferation and allow the retention of dif-

ferentiated cell functions. Although HA is bioactive, it has

no functional groups as biological signals, HA coatings can

not well interact with cells [4].

More recently, the mechanisms of interaction between

proteins from the extracellular matrix (ECM) and cell

membrane receptors were reported [5]. A number of the

biomolecules (native proteins and synthetic peptides) are

acknowledged to control cell adhesion and growth. Cell–

ECM interactions are considered as a significant step for

the osteointegration which is much sensitive to the surface

composition and feature of implantable biomaterials [6].

Surface modification is a powerful way to enhance positive

cell–ECM interactions and promote bone biomechanical

stability [7]. Substances including poly(L-lysine), collagen,

and cell adhesive proteins such as fibronectin, laminin,

vitronectin, or peptide sequences have been adsorbed onto

the surface of biomaterial matrix to promote cell attach-

ment, the modified biomaterial surfaces can be function-

alized to modulate cell–ECM interactions [8–11].

Many peptide sequences involved in cellular interac-

tions by receptor binding have been identified, including

RGD, IKVAV, and YIGSR [12]. Among these, the RGD

sequence, which was first discovered in fibronectin on 1984

[13], is probably one of the best known for use as integrin-

binding domains. The surface immobilization of RGD has

several advantages: higher stability against conformational

change, easy controllability of surface density, and orien-

tation more favorable for ligand–receptor interaction and

cell adhesion. It is also beneficial for minimizing immune

responses and infection [10–12]. Many materials have been

modified with RGD to improve the interaction with cells

[11, 14]. However, these reports just limit on the materials

in powders and porous bulks, and the methods in simply

physical absorption.

C. Yang � K. Cheng � W. Weng (&)

Department of Materials Science and Engineering, State Key

Laboratory of Silicon Materials, Zhejiang University, Hangzhou,

Zhejiang 310027, People’s Republic of China

e-mail: wengwj@zju.edu.cn

C. Yang � C. Yang

Depertment of Food Engineering, Harbin University

of Commerce, Harbin, Heilongjiang 150076,

People’s Republic of China

123

J Mater Sci: Mater Med (2009) 20:2349–2352

DOI 10.1007/s10856-009-3794-1



The existing stability of RGD on the surface, especially

on coating surface, determines whether its function works

or not [15, 16]. Immobilization of RGD onto implantable

biomaterial surface by covalent bond can be a much more

effective strategy, resulting in a durable modified surface

and protecting RGD from being washed out by blood and

body fluid [17].

In this work, firstly, 3-aminopropyltriethoxysilane (AP-

TES) was used to create amine groups on HA coatings;

then, RGD was covalently coupled to the surface amino

groups on HA coatings. As a comparison, HA coatings

were directly soaked in the RGD-containing PBS buffer

solution, RGD was physically adsorbed on the coatings.

The different modified HA coatings were characterized by

means of FTIR-ATR, contact angle and XPS techniques,

and their differences were discussed.

2 Materials and methods

2.1 Materials

HA coatings were prepared on 30 mm 9 20 mm 9 1 mm

Ti substrate following a sol–gel method [18]. Arginine-

glycine-aspartic acid (Arg-Gly-Asp) sequence of fibronectin

(RGD; FW = 346.3 g/gmol, NeoMPS PolyPeptide labora-

tories), 1-ethyl-3-(3-dimethyllaminopropyl)carbodiimide

hydrochloride(C8H17N3 � HCl, EDC.HCl, Acros), 3-ami

nopropyltriethoxysilane(SiO3C9H23 N, APTES, Acros),

2-(N-morpholino)-ethanesulfonic acid(C6H13O4NS H2O,

MES buffer, Shanghai Major Bio Technologies Co., Ltd),

phosphate buffer saline(PBS, Dycent Biotech shanghai CO.,

Ltd), ethanol (C2H5OH, Sinopharm Chemical Reagent CO.,

Ltd) were used.

2.2 Methods

RGD was chemically immobilized on HA coatings (C-RGD-

HA) through the following 3 steps: (1) HA coatings were

immersed into APTES ethanol solution (20 mmol/L) at

room temperature for 4 h with rigorously stirring, washed by

ethanol for three times, and dried in a vacuum oven at 120�C

for 24 h to be APTES-modified HA coating. (2) The modi-

fied coatings were again immersed in MES buffer solution

with 0.3% (w/v) 1-ethyl-3-(3-dimethyllaminopropyl) car-

bodiimide hydrochloride at designed temperature for 6 h

with rigorously stirring, washed with the MES buffer solu-

tion for three times. (3) the MES buffer solution treated

coatings were put into RGD-containing PBS buffer solution

(300 lg/ml) and settled for 4 h at room temperature, then,

the coatings were rinsed with PBS for three times and

lyophilized for 2 days.

As a comparison, the physically immobilized RGD on

HA coatings (P-RGD-HA) were prepared by immersing the

coatings directly into RGD-containing PBS buffer solution

(300 lg/ml) as the above step 3.

To evaluate the stability of RGD on the modified HA

coatings, both C-RGD-HA and P-RGD-HA samples in

ethanol solution were further treated by ultrasonic irradia-

tion for two minutes at room temperature.

Fourier transform infrared-attenuated total reflectance-

spectra (FTIR-ATR, Thermo, NICOLET830), water con-

tact angles (OCA20, Dataphysics) were recorded for the

modified coatings before and after ultrasonic irradiation.

X-ray Photoelectron Spectroscopy analysis (XPS, Thermo

ESCALAB 250 system) with focused monochromatic Al

K. X-ray source (1486.6 eV) was used, C1s peak at

284.8 eV was used for calibration.

3 Results and discussions

3.1 FTIR spectra

Figure 1 gives the FTIR-ATR spectra of HA coating and

RGD-modified HA coatings, the results show that both

P-RGD-HA coating and C-RGD-HA coating have a strong

absorption at 1655 cm-1 and at 1557 cm-1, these bands

are characteristic of Amide I and Amide II of RGD mol-

ecule, respectively. Obviously, RGD has existed on the HA

coatings obtained by both physical adsorption and chemi-

cal bonding approaches.

Figure 2 gives the FTIR-ATR spectra of HA coating and

RGD-modified HA coatings after ultrasonic irradiation.

1600 1400 1200 1000 800 600

15571651

C-RGD-HA

P-RGD-HA

APTES-modified HA

HA

).u.a( ecnatcelfe
R

Wave number(cm-1)

Fig. 1 FTIR-ATR spectra of HA coating and RGD-modified HA

coating
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The strong absorptions at 1655 cm-1 and at 1557 cm-1

still exist in C-RGD-HA coating but disappear in P-RGD-

HA coating. It is demonstrated that the immobilization of

RGD by physical adsorption is unstable, and the immobi-

lization by chemical bonding shows good stability, and can

provide a better cell adhesive stratum.

3.2 Water contact angle measurement

In this work, the water contact angle of HA coating is 51.5�.

As tabulated in Table 1, the contact angle of APTES-

modified HA coating (75.1�) is higher than that of HA

coating because siloxane in APTES has low-surface-energy

and shows hydrophobicity. After RGD modification, the

water contact angle of P-RGD-HA decreases due to

hydrophilic amino and carboxyl groups existing in RGD.

RGD is suggested to be covalently coupled by carbodiimide

mediated condensation between carboxyl groups present in

the RGD and amino groups of the HA coatings surface. It

can be showed that water contact angle of C-RGD-HA

decreases obviously compared with APTES-modified HA

coating. While it is noteworthy that the water contact angle

of C-RGD-HA coating remains almost unchanged after

ultrasonic irridiation, it is again proved that the surface of

C-RGD-HA coating is stable, i.e., RGD exists stably. As for

P-RGD-HA, after ultrasonic irradiation, the water contact

angle increases obviously. That means that most of physical

adsorbed RGD have been washed out, and physical adsor-

bed surface is unstable. The change in contact angle is in

good agreement with those in its FTIR-ATR spectra.

3.3 XPS analysis

In Fig. 3, the high-resolution XPS spectra of N1s region

recorded from the ultrasonic irridiated surface further

confirms the preservation of RGD on C-RGD-HA after

ultrasonic treatment. Besides the peak at 400.0 eV from N

in APTES, a shoulder peak at 401.8 eV is observed. This

peak is attributed to N in RGD [19, 20]. Calculated from

the areas of deconvolved N1s curve, there is actually about

38% N1s signal coming from chemically bonded RGD

molecules. That again coincides well with the FTIR result:

for C-RGD-HA, much RGD peptides still exists even after

ultrasonic irridiation.
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Fig. 2 FTIR-ATR spectra of HA coating and RGD-modified HA

coating after ultrasonic irradiation

Table 1 Water contact angle

measurement of APTES-

modified HA coating and RGD-

modified HA coating

P-RGD-HA C-RGD-HA

Before RGD modification

(Bare HA coating)

51.5� Before RGD modification

(APTES-modified HA)

75.1�

After RGD modification 22.4� After RGD modification 48.2�
After ultrasonic irradiation 36.0� After ultrasonic irradiation 47.9�
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Fig. 3 High-resolution XPS spectrum of N1s region of APTES-

modified HA coating and C-RGD-HA
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4 Conclusions

In this study, RGD peptide is successfully immobilized

onto the surface of HA coatings by both physical adsorp-

tion and chemical bonding. Through ultrasonic irradiation

test, it is proved that RGD in C-RGD-HA is more stable

than that in P-RGD-HA. The present work also shows that

immobilization of RGD onto implantable biomaterial sur-

face by covalent bond could be an effective strategy, it will

protect RGD from being influenced by blood and body

fluid. It can favor RGD sequences to act as cellular adhe-

sion ligands to respond interactions between cell-mem-

brane integrins and extracellular matrix proteins.
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